Kobalt Esaslı Haynes 25/L-605 Süper Alaşımının Borlanması

Author :  

Year-Number: 2022-3
Yayımlanma Tarihi: 2022-12-06 14:01:01.0
Language : Türkçe
Konu : Makine Mühendisliği
Number of pages: 206-219
Mendeley EndNote Alıntı Yap

Abstract

Bu çalışmada, kobalt esaslı Haynes 25 süperalaşımına 900℃’de 2 saat, 900℃’de 4 saat ve 1000℃’de 4 saat süre ile %90 B4C+%10 NaBF4 tozları ortamında kutu borlama işlemi uygulanmıştır. Borlama sonrası numunelerin yüzeyinde oluşturulan borür tabakalarının karakterizasyonu taramalı elektron mikroskobu (SEM), X-ışını difraktometresi (XRD)  ve mikrosertlik testleri ile gerçekleştirilmiştir. XRD analizleri sonucunda yüzeyde oluşan borür tabakalarının alaşımın içeriği ve difüze olan bor elementine bağlı olarak baskın fazın CoB olmakla birlikte yapıda düşük miktarda  (CoFe)B2, CrB ve W3CoB3 fazlarından oluştuğu tespit edilmiştir. Borlama sıcaklığı ve borlama süresindeki artış kaplama kalınlığı ve sertlik değerlerinde artış ile sonuçlanmıştır. Kullanılan yüksek konsantrasyonlu borlama tozu sayesinde literatüre göre daha kalın borür tabakaları elde edilmiştir. Borlama işlemi sonucu Haynes 25 süperalaşımının sertlik değerinde 5 kat’a varan bir artış meydana gelmiştir.

Keywords

Abstract

In this study, cobalt-based Haynes 25 superalloy was borided in the environment of 90% B4C+10% NaBF4 powders for 2 hours at 900°C, 4 hours at 900°C and 4 hours at 1000°C. The characterization of the boride layers formed on the surface of the samples after borided was carried out by scanning electron microscope (SEM), X-ray diffractometry (XRD) and microhardness tests. In XRD analysis, it was determined that the dominant phase of the boride layers formed on the surface, depending on the alloy content and the diffused boron element, consisted of CoB as well as low amounts of (CoFe)B2, CrB and W3CoB3 phases in the structure. The increase in boriding temperature and boriding time resulted in an increase in coating thickness and hardness values. Thanks to the high concentration boronizing powder used, thicker boride layers were obtained compared to the literature. As a result of the boriding process, the hardness value of Haynes 25 superalloy increased up to 5 times. 

Keywords


  • [1] Coutsouradis, D., Davin, A. ve Lamberigts, M., (1987). Cobalt-based superalloys for applications in gas turbines, Materials Science and Engineering, volume 88, 11-19.

  • [2] Garcia-Falcon CM, Gil-Lopez T, Verdu-Vazquez A, MirzaRosca JC. Electrochemical characterization of some cobalt base alloys in Ringer solution. M Chem Phys. 2021;260:124164. doi:10.1016/j.matchemphys.2020.124164.

  • [3] Ahmed R, De Villiers Lovelock HL, Davies S. Sliding wear of blended cobalt based alloys. Wear. 2021; 466-467:203533. doi: 10.1016/j.wear.2020.203533.

  • [4] Osada, T., Gu, Y., Nagashima, N., Yuan, Y., Yokokawa, T., & Harada, H. (2013). Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure. Acta materialia, 61(5), 1820-1829.

  • [5] Wang, S. Y., Sun, Y., Hou, X. Y., Cui, C. Y., Sun, X. F., & Zhou, Y. Z. (2020). Investigation on microstructure and mechanical properties of a vacuum brazed joint of γ′-strengthened Co-based single crystal superalloy before and after the post-bond heat treatment. Vacuum, 177, 109413.

  • [6] Costa, A. M. S., Oliveira, J. P., Escobar, J. D., Salvador, C. A. F., Monteiro, M. J., Poplawsky, J. D., ... & Tschiptschin, A. P. (2022). On the effect of elemental partitioning to secondary phases after solution and aging heat treatments in a Co-Ni-based superalloy. Materials Letters, 309, 131377.

  • [7] I. Campos-Silva, D. Bravo-Bárcenas, H. Cimenoglu, U. Figueroa-López, M. Flores-Jiménez, O. Meydanoglu, The boriding process in CoCrMo alloy: Fracture toughness in cobalt boride coatings, Surf. Coat. Technol. 260 (2014) 362–368.

  • [8] D. Mu, B.-L. Shen, X. Zhao, Effects of boronizing on mechanical and dry-sliding wear properties of CoCrMo alloy, Mater. Des. 31 (8) (2010) 3933–3936.

  • [9] I. Campos-Silva, D. Bravo-Bárcenas, A. Meneses-Amador, M. Ortiz-Dominguez, H. Cimenoglu, U. Figueroa-López, J. Andraca-Adame, Growth kinetics and mechanical properties of boride layers formed at the surface of the ASTM F-75 biomedical alloy, Surf. Coat. Technol. 237 (2013) 402–414.

  • [10] C.A. Cuao-Moreu, E. Hernández-Sanchéz, M. Alvarez-Vera, E.O. Garcia-Sanchez, A. Perez-Unzueta, M.A.L. Hernandez-Rodriguez, Tribological behavior of borided surface on CoCrMo cast alloy, Wear 426-427 (2019) 204–211.

  • [11] I. Campos-Silva, R.C. Vega-Moron, C.D. Reséndiz-Calderón, D. Bravo-Barcenas, O.L. Eryilmaz, O. Kahvecioglu-Feridum, G. Rodríguez-Castro, Dry Sliding Wear Resistance of Cobalt Boride Coatings Formed on ASTM F1537 Alloy, J. Mater. Eng. Perform. 28 (2019) 2399–2410.

  • [12] I. Campos-Silva, G. Rodriguez-Castro, Boriding to improve the mechanical properties and corrosion resistance of steel, in: E. Mittemeijer, A. Somers (Eds.), Termochemical surface engineering of steels, Woodhead publishing, 2015, pp. 651–702.

  • [13] Günen, A. (2012). Nano bor tozu ile yüzeyi alaşımlandırılan östenitik paslanmaz çeliğin mekanik özellikler ve korozyon davranışının araştırılması/Investigation of mechanical properties and corrosion behavior of austenitic stainless steel the surface of which alloyed with nanoboron powder.

  • [14] Kulka, M., Kulka, M., & Castro. (2019). Current trends in boriding (pp. 17-98). Cham, Switzerland: Springer International Publishing.

  • [15] Günen, A., & Kanca, E. (2017). Characterization of borided Inconel 625 alloy with different boron chemicals. Pamukkale University Journal of Engineering Sciences, 23(4), 411-416.

  • [16] Gunes, I. (2013). Kinetics of borided gear steels. Sadhana, 38(3), 527-541.

  • [17] Gunes, I. (2022). Investigation of corrosion behavior of construction steel in hydrochloric and sulfuric acid. Journal of Characterization, 2(2), 161-166.

  • [18] Günen, A., Kanca, Y., Karahan, İ. H., Karakaş, M. S., Gök, M. S., Kanca, E., & Çürük, A. (2018). A comparative study on the effects of different thermochemical coating techniques on corrosion resistance of STKM-13A steel. Metallurgical and Materials Transactions A, 49(11), 5833-5847.

  • [19] Keddam, M., & Chentouf, S. M. (2005). A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding. Applied Surface Science, 252(2), 393-399.

  • [20] Gunen, A., Keddam, M., Sunbul, S. E., Icin, K., Doleker, K. M., Gok, M. S., ... & Erdogan, A. (2022). Powder-pack boronizing of CoCrFeNiAl0. 5Nb0. 5 HEA: Modeling of kinetics, microstructural, mechanical, and tribological characterizations. Journal of Alloys and Compounds, 929, 167310.

  • [21] Kramer, D. P., McDougal, J. R., Ruhkamp, J. D., McNeil, D. C., Koehler, F. A., Booher, R. A., & Howell, E. I. (1998, January). Application of the cobalt based superalloy Haynes Alloy 25 (L605) in the fabrication of future radioisotope power systems. In AIP Conference Proceedings (Vol. 420, No. 1, pp. 1167-1172). American Institute of Physics.

  • [22] Günen, A., Keddam, M., Erdoğan, A., & Karakaş, M. S. (2021). Pack-Boriding of Monel 400: Microstructural Characterization and Boriding Kinetics. Metals and Materials International, 1-13.

  • [23] Campos-Silva, I., Delgado-Brito, A. M., Oseguera-Peña, J., Martínez-Trinidad, J., Kahvecioglu-Feridun, O., Pasten-Borja, R. P., & López-Suero, D. (2019). Tribocorrosion resistance of borided ASTM F1537 alloy. Surface and Coatings Technology, 375, 810-823.

  • [24] Doñu-Ruiz, M. A., López-Perrusquia, N., Renteria-Salcedo, A., Flores-Martinez, M., Rodriguez-De Anda, E., Muhl, S., ... & García, E. (2021). Tribocorrosion behavior of boride coating on CoCrMo alloy produced by thermochemical process in 0.35% NaCl solution. Surface and Coatings Technology, 425, 127698.

  • [25] Resendiz-Calderon, C. D., Farfan-Cabrera, L. I., Rodríguez-Castro, G. A., & Gallardo-Hernandez, E. A. (2021). Micro-abrasion/Corrosion Behavior of Pack-Borided AISI 316L Steel and ASTM F1537 CoCrMo Alloy in Ceramic-on-Ceramic Couplings. Journal of Materials Engineering and Performance, 30(6), 3955 3967.

  • [26] Çalik, A. (2013). Effect of powder particle size on the mechanical properties of boronized EN H320 LA steel sheets. ISIJ international, 53(1), 160-164.

                                                                                                                                                                                                        
  • Article Statistics