SARS-CoV-2 ve diğer koronavirüsler: büyük fizik makinelerine dayalı gelişmiş karakterizasyonun yenilikçi yaklaşımları

Author :  

Year-Number: 2021-3
Yayımlanma Tarihi: 2021-10-23 14:48:17.0
Language : English
Konu : Physical Characterization
Number of pages: 137-147
Mendeley EndNote Alıntı Yap

Abstract

Hızla büyüyen koronavirüs hastalığı (COVID-19) salgınından sorumlu patojen olan yeni koronavirüs SARS-CoV-2, son derece yüksek bulaşıcılığı ve potansiyel pnömoni geliştirme riski nedeniyle yaygın endişelere ve korkuya neden oluyor. Küresel araştırma çabaları, devam eden pandemi ile mücadele etmek için etkili ilaçlar veya aşılar geliştirmek için virüs patogenezinin moleküler mekanizmasını araştırmaya adanmıştır. SARS-CoV-2 proteinleriyle ilgili veya viral enfeksiyonların tedavisi için potansiyel ilaçların test edilmesiyle ilgili çeşitli deneyler şu anda yürütülmektedir. Bu derlemede, Synchrotron radyasyonu ve Nötron ışınlarını kullanan büyük fizik makinelerine dayalı ileri karakterizasyon için yenilikçi yaklaşımlar tartışılmaktadır.

Keywords

Abstract

The novel coronavirus SARS-CoV-2, the pathogen responsible for the rapidly growing outbreak of coronavirus disease (COVID-19), is causing widespread concerns and fear, due to its extremely high contagiousness and the potential risk of developing pneumonia. Global research efforts have been devoted to investigating the molecular mechanism of virus pathogenesis, in order to develop effective drugs or vaccines to tackle the on-going pandemic. Several experiments related to SARS-CoV-2 proteins or for testing potential drugs for the treatment of viral infections are currently being carried out. In the present review, innovative approaches for advanced characterization based on large machines of physics, making use of Synchrotron radiation and Neutron beams, are discussed.

Keywords


  • [1].Rustichelli, F. The Huge Machines of Physics: the bet of the Multidisciplinary Research Teams in Regenerative Medicine, In Advanced High-Resolution Tomography in Regenerative Medicine. Fundamental Biomedical Technologies; Giuliani, A., Cedola, A., Eds.; Springer Cham, Switzerland, 2018; pp. 1-17. https://doi.org/10.1007/978-3-030-00368-5_1

  • [2].Protein crystallography at BESSY II: a tool for decoding the building blocks of life. Available online: https://www.helmholtz-berlin.de/forschung/unsereforschung/photonenforschung/proteinkristallographie-an-bessy-ii/index_en.html (accessed on 28 September 2021).

  • [3].Ramakrishnan, V. Ribosome Structure and the Mechanism of Translation. Cell 2002, 108, 557-572. https://doi.org/10.1016/S0092-8674(02)00619-0

  • [4].Schulze, S.; Koster, S.; Geldmacher, U.; Terwisscha van Scheltinga, A.C.; Kuhlbrandt, W. Structural basis of Na(+)-independent and cooperative substrate/product anti port in CaiT. Nature 2010, 467, 233-236. https://doi.org/10.1038/nature09310

  • [5].Kobilka, B. G protein coupled receptor structure and activation. Biochim. Biophys. Acta 2007, 1768, 794-807. https://doi.org/10.1016/j.bbamem.2006.10.021

  • [6].MacKinnon, R. Potassium channels. FEBS Letters 2003, 555, 62-65. https://doi.org/10.1016/S0014- 5793(03)01104-9

  • [7].Fratini, M.; Bukreeva, I.; Campi, G.; Brun, F.; Tromba, G.; Modregger, P.; Bucci, D.; Battaglia, G.; Spanò, R.; Mastrogiacomo, M.; Requardt, H.; Giove, F.; Bravin, A.; Cedola, A. Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord. Sci. Rep. 2015, 5, 8514. https://doi.org/10.1038/srep08514

  • [8].Coronavirus SARS-CoV2: BESSY II data accelerate drug development. Available online: http://www.sciencedaily.com/releases/2020/03/200320101631.htm (accessed on 28 September 2021).

  • [9].Synchrotrons on the coronavirus frontline (2020). Available online: https://cerncourier.com/a/synchrotrons-on-the-coronavirus-frontline (accessed on 28 September 2021).

  • [10]. Zhang, L.; Lin, D.; Kusov, Y.; et al. α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. J. Med. Chem. 2020, 63, 4562-4578. https://doi.org/10.1021/acs.jmedchem.9b01828.

  • [11]. Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved αketoamide inhibitors. Science 2020, eabb3405. https://doi.org/10.1126/science.abb3405

  • [12]. Shang. J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020, 581, 221-224. https://doi.org/10.1038/s41586020-2179-y

  • [13]. Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215-220. https://doi.org/10.1038/s41586-020-2180-5.

  • [14]. Hilgenfeld, R.; Peiris, J.S.M. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res 2013, 100, 286-295. https://doi.org/10.1016/j.antiviral.2013.08.015

  • [15]. Lightsource research on SARS-CoV-2. Available online: https://lightsources.org/2020/04/14/lightsource-research-and-sars-cov-2 (accessed on 28 September

  • [16]. Rogante, M. Applicazioni Industriali delle Tecniche Neutroniche. In Proceedings of the 1st Italian Workshop for Industry “Industrial Applications of Neutron Techniques”, Civitanova Marche, Italy, 12-14 June 2008; Rogante Engineering, Ed.; 2008; pp. 40-120.

  • [17]. Feigin, L.A.; Svergun, D.I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering; Springer: USA, 1987; p. 335. https://doi.org/10.1007/978-1-4757-6624-0

  • [19]. Williams, C.; May, R.P.; Guinier, A. Characterisation of Materials. In Materials Science and Technology; Lifshin, E., Ed.; VCH Verlagsgesellschaft: Weinheim, Germany, 1994; Volume 2B, pp 611-656.

  • [20]. Virtual Burley SK Boot Camp: COVID-19 evolution and structural biology, Biochem Mol Biol Educ. 2020.

  • [21]. Baker E.N. Visualizing an unseen enemy; mobilizing structural biology to counter COVID-19. Acta Crystallogr F Struct Biol Commun. 2020.

  • [22]. Baker E.N. Visualizing an unseen enemy; mobilizing structural biology to counter COVID-19. IUCrJ. 2020. PMID: 32431818

  • [23]. Liu P., Liu H., Sun Q., Liang H., Li C., Deng X., Liu Y., Lai L. Potent inhibitors of SARS-CoV-2 3C- like protease derived from N-substituted isatin compounds. Eur J Med Chem. 2020 Aug 1;206:112702. doi: 10.1016/j.ejmech.2020.112702.

  • [24]. Worby C.J., Chang H.H. Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic. Nat Commun. 2020 Aug 13; 11(1):4049. doi: 10.1038/s41467-02017922-x.

  • [25]. Chen J., Malone B., Llewellyn E., Grasso M., Shelton P.M.M., Olinares P.D.B., Maruthi K., Eng E.T., Vatandaslar H., Chait B.T., Kapoor T.M., Darst S.A., Campbell E.A. Structural Basis for HelicasePolymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex..Cell. 2020 Jul 28:S0092-8674(20)30941-7. doi: 10.1016/j.cell.2020.07.033.

  • [26]. Omotuyi I.O., Nash O., Ajiboye O.B., Iwegbulam C.G., Oyinloye E.B., Oyedeji O.A., Kashim Z.A., Okaiyeto K. Atomistic simulation reveals structural mechanisms underlying D614G spike glycoprotein-enhanced fitness in SARS-COV-2. J Comput Chem. 2020 Sep 15;41(24):2158-2161. doi: 10.1002/jcc.26383.

  • [27]. Srivastava S., Verma S., Kamthania M., Kaur R., Badyal R.K., Saxena A.K., Shin H.J., Kolbe M., Pandey K.C. Structural Basis for Designing Multiepitope Vaccines Against COVID-19 Infection: In Silico Vaccine Design and Validation. JMIR Bioinform Biotech. 2020 Jun 19; 1(1):e19371. doi: 10.2196/19371. eCollection 2020 Jan-Dec.

  • [28]. Mohammad A., Marafie S.K., Alshawaf E., Abu-Farha M., Abubaker J., Al-Mulla F. Structural analysis of ACE2 variant N720D demonstrates a higher binding affinity to TMPRSS2. Life Sci. 2020 Aug 5:118219. doi: 10.1016/j.lfs.2020.118219. Online ahead of print.

  • [29]. Bates T.A., Weinstein J.B., Farley S.E., Leier H.C., Messer W.B., Tafesse F.G. Cross-reactivity of SARS-CoV structural protein antibodies against SARS-CoV-2. bioRxiv. 2020 Jul 30:2020.07.30.229377. doi: 10.1101/2020.07.30.229377.

  • [30]. Khan S., Tombuloglu H., Hassanein S.E., Rehman S., Bozkurt A., Cevik E., Abdel-Ghany S., Nabi G., Ali A., Sabit H. Coronavirus diseases 2019: Current biological situation and potential therapeutic perspective. Eur J Pharmacol.,Vol. 886, 5 November 2020, 173447 https://doi.org/10.1016/j.ejphar.2020.173447

  • [31]. Adhikari P., Li N., Shin M., Steinmetz N.F., Twarock R., Podgornik R., Ching W.Y. Intra- and intermolecular atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein: implication for ACE2 receptor binding. Phys Chem Chem Phys. 2020 Aug 5. doi: 10.1039/d0cp03145c.

  • Microbiol. 203, pp. 59–66 (2021) https://dx.doi.org/10.1007%2Fs00203-020-01998-6 PMID:

  • [33]. Zhou T., Teng I.T., Olia A.S., Cerutti G., Gorman J., Nazzari A., Shi W., Tsybovsky Y., Wang L., Wang S., Zhang B., Zhang Y., Katsamba P.S., Petrova Y., Banach B.B., Fahad A.S., Liu L., Lopez Acevedo S.N., Madan B., Olivera de Souza M., Pan X., Wang P., Wolfe J.R., Yin M., Ho D.D., Phung E., Di Piazza A., Chang L., Abiona O., Corbett K.S., DeKosky B.J., Graham B.S., Mascola J.R., Misasi J., Ruckwardt T., Sullivan N.J., Shapiro L. Structure-Based Design with Tag-Based Purification and InProcess Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes, Cell Report, Volume 33, Issue 4, 27 October 2020, 108322 https://doi.org/10.1016/j.celrep.2020.108322

  • [34]. Zhou D., Duyvesteyn H.M.E., Chen C.P., Huang C.G., Chen T.H., Shih S.R., Lin Y.C., Cheng C.Y., Cheng S.H., Huang Y.C., Lin T.Y., Ma C., Huo J., Carrique L., Malinauskas T., Ruza R.R., Shah P.N.M., Tan T.K., Rijal P., Donat R.F., Godwin K., Buttigieg K.R., Tree J.A., Radecke J., Paterson N.G., Supasa P., Mongkolsapaya J., Screaton G.R., Carroll M.W., Gilbert-Jaramillo J., Knight M.L., James W., Owens R.J., Naismith J.H., Townsend A.R., Fry E.E., Zhao Y., Ren J., Stuart D.I., Huang K.A. Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient..Nat Struct Mol Biol. 2020 Jul 31. doi: 10.1038/s41594-020-0480-y.

  • [35]. Payandeh Z., Rahbar M.R., Jahangiri A., Hashemi Z.S., Zakeri A., Jafarisani M., Rasaee M.J., Khalili S.J. Design of an engineered ACE2 as a novel therapeutics against COVID-19. Theor Biol. 2020 Jul 29; 505:110425. doi: 10.1016/j.jtbi.2020.110425.

  • [36]. Viswanathan T., Arya S., Chan S.H., Qi S., Dai N., Misra A., Park J.G., Oladunni F., Kovalskyy D., Hromas R.A., Martinez-Sobrido L., Gupta Y.K. Structural basis of RNA cap modification by SARSCoV-2. Nat Commun. 2020 Jul 24; 11(1):3718. doi: 10.1038/s41467-020-17496-8. PMID: 32709886

  • [37]. Ghosh A.K., Brindisi M., Shahabi D., Chapman M.E., Mesecar A.D. Drug Development and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics. ChemMedChem. 2020 Jun 4; 15(11):907-932.

  • [38]. Cai Y., Zhang J., Xiao T., Peng H., Sterling S.M., Walsh R.M. Jr, Rawson S., Rits-Volloch S., Chen B. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020 Jul 21:eabd4251. doi: 10.1126/science.abd4251.

  • [39]. Ke Z., Oton J., Qu K., Cortese M., Zila V., McKeane L., Nakane T., Zivanov J., Neufeldt C.J., Cerikan B., Lu J.M., Peukes J., Xiong X., Kräusslich H.G., Scheres S.HW., Bartenschlager R., Briggs J.A.G. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020 Aug 17. doi: 10.1038/s41586-020-2665-2.

  • [40]. Gross L.Z.F., Sacerdoti M., Piiper A., Zeuzem S., Leroux A.E., Biondi R.M. ACE2, the Receptor that Enables Infection by SARS-CoV-2: Biochemistry, Structure, Allostery and Evaluation of the Potential Development of ACE2 Modulators. ChemMedChem. 2020 Jul 14:10.1002/cmdc.202000368. doi: 10.1002/cmdc.202000368.

  • [41]. Tiwari V., Beer J.C., Sankaranarayanan N.V., Swanson-Mungerson M., Desai U.R. Discovering small- molecule therapeutics against SARS-CoV-2. .Drug Discov Today. 2020 Jun 20;25(8):1535-44. doi: 10.1016/j.drudis.2020.06.017.

  • [42]. Huang J., Song W., Huang H., Sun Q.J. Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19. Clin Med. 2020 Apr 15; 9(4):1131. doi: 10.3390/jcm9041131.

  • [43]. Chen Y., Liu Q., Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020 Apr; 92(4):418-423. doi: 10.1002/jmv.25681.

                                                                                                                                                                                                        
  • Article Statistics